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Pros:
1. Faster generation
2. Preserved quality (matching exactly the large model)

3. A smaller model might be already available



Speculative decoding

Pros:

1. Faster generation

2. Preserved quality (matching exactly the large model)
3. A smaller model might be already available

Cons:

1. Might need to train the smaller model

2. Limited speed-up

3. More weights to store
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1. Less training

2. Easy generation of multiple candidates

Cons:

1. Requires changing the base model for best results

2. The more tokens you generate, the worse the results
3. Medusa heads still have many parameters
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Our approach
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Optimize the tree using candidate probabilities.
You can additionally use speculative decoding!
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Figure 4: Comparative evaluation of latency
speedup between PPD and other parallel de-
coding methods. The experiments were con-
ducted using the MT-Bench dataset, with the
temperature set to MT-Bench’s default config-
uration for Medusa and PPD.
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Pros:

1. Even less training

2. Less memory consumption
3. Higher acceptance rate



Our approach

Pros:

1. Even less training

2. Less memory consumption

3. Higher acceptance rate

Cons:

1. “Section 4 is too dense”

2. “Can you perform more ablations?”

3. “Only minor speedups over prior work”



